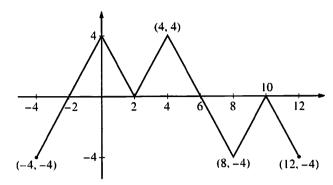
Problem 1 [2016 AB FRQ #3a]



Graph of f

- 3. The figure above shows the graph of the piecewise-linear function f. For $-4 \le x \le 12$, the function g is defined by $g(x) = \int_{2}^{x} f(t) dt$.
 - (a) Does g have a relative minimum, a relative maximum, or neither at x = 10? Justify your answer.

Problem 2 [2015 AB FRQ #1c]

- 1. The rate at which rainwater flows into a drainpipe is modeled by the function R, where $R(t) = 20\sin\left(\frac{t^2}{35}\right)$ cubic feet per hour, t is measured in hours, and $0 \le t \le 8$. The pipe is partially blocked, allowing water to drain out the other end of the pipe at a rate modeled by $D(t) = -0.04t^3 + 0.4t^2 + 0.96t$ cubic feet per hour, for $0 \le t \le 8$. There are 30 cubic feet of water in the pipe at time t = 0.
- (c) At what time t, $0 \le t \le 8$, is the amount of water in the pipe at a minimum? Justify your answer.

$$A(t) = 30 + \int_{0}^{t} R(x) - D(x) dt$$

 $A'(t) = R(t) - D(t) = 0$
 $t = 3.2717$ hours
 $A''(3.2717) = 1.2727 70$
so locates min by 2nd deriv test

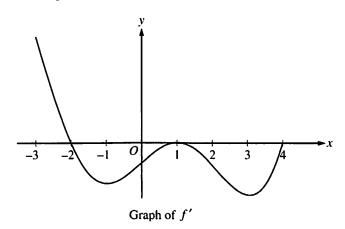
Problem 3 [2015 AB FRQ #4c]

- 4. Consider the differential equation $\frac{dy}{dx} = 2x y$.
 - (c) Let y = f(x) be the particular solution to the differential equation with the initial condition f(2) = 3. Does f have a relative minimum, a relative maximum, or neither at x = 2? Justify your answer.

$$\frac{dy}{dx} = 2(2) - 3 = 1$$

neither

Problem 4 [2015 AB FRQ #5a]

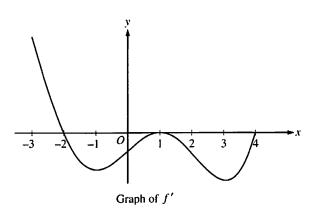


- 5. The figure above shows the graph of f', the derivative of a twice-differentiable function f, on the interval [-3, 4]. The graph of f' has horizontal tangents at x = -1, x = 1, and x = 3. The areas of the regions bounded by the x-axis and the graph of f' on the intervals [-2, 1] and [1, 4] are 9 and 12, respectively.
 - (a) Find all x-coordinates at which f has a relative maximum. Give a reason for your answer.

f has relative maximum
$$@x = -2$$

because f' changes signs

Problem 5 [2015 AB FRQ #5c]



- 5. The figure above shows the graph of f', the derivative of a twice-differentiable function f, on the interval [-3, 4]. The graph of f' has horizontal tangents at x = -1, x = 1, and x = 3. The areas of the regions bounded by the x-axis and the graph of f' on the intervals [-2, 1] and [1, 4] are 9 and 12, respectively.
- (c) Find the x-coordinates of all points of inflection for the graph of f. Give a reason for your answer.

Problem 6 [2014 AB FRQ #5a]

х	-2	-2 < x < -1	-1	-1 < x < 1	1	1 < x < 3	3
f(x)	12	Positive	8	Positive	2	Positive	7
f'(x)	-5	Negative	0	Negative	0	Positive	$\frac{1}{2}$
g(x)	-1	Negative	0	Positive	3	Positive	1
g'(x)	2	Positive	$\frac{3}{2}$	Positive	0	Negative	-2

- 5. The twice-differentiable functions f and g are defined for all real numbers x. Values of f, f', g, and g' for various values of x are given in the table above.
 - (a) Find the x-coordinate of each relative minimum of f on the interval [-2, 3]. Justify your answers.

Problem 7 [2013 AB FRQ #1d]

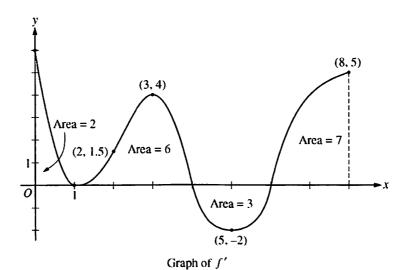
- 1. On a certain workday, the rate, in tons per hour, at which unprocessed gravel arrives at a gravel processing plant is modeled by $G(t) = 90 + 45\cos\left(\frac{t^2}{18}\right)$, where t is measured in hours and $0 \le t \le 8$. At the beginning of the workday (t = 0), the plant has 500 tons of unprocessed gravel. During the hours of operation, $0 \le t \le 8$, the plant processes gravel at a constant rate of 100 tons per hour.
- (d) What is the maximum amount of unprocessed gravel at the plant during the hours of operation on this workday? Justify your answer.

$$A(t) = 500 + \int_{0}^{t} G(x) - 100 dx$$

$$A'(t) = G(t) - 100 = 0$$

$$C_{0} = 0$$

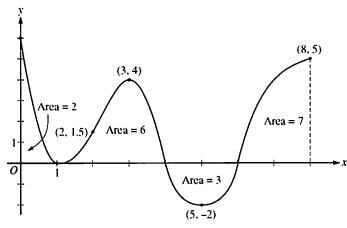
Problem 8 [2013 AB FRQ #4a]



- 4. The figure above shows the graph of f', the derivative of a twice-differentiable function f, on the closed interval $0 \le x \le 8$. The graph of f' has horizontal tangent lines at x = 1, x = 3, and x = 5. The areas of the regions between the graph of f' and the x-axis are labeled in the figure. The function f is defined for all real numbers and satisfies f(8) = 4.
 - (a) Find all values of x on the open interval 0 < x < 8 for which the function f has a local minimum. Justify your answer.

Problem 9 [2013 AB FRQ #4b]

(b) Determine the absolute minimum value of f on the closed interval $0 \le x \le 8$. Justify your answer.



Graph of f'

4. The figure above shows the graph of f', the derivative of a twice-differentiable function f, on the closed interval $0 \le x \le 8$. The graph of f' has horizontal tangent lines at x = 1, x = 3, and x = 5. The areas of the regions between the graph of f' and the x-axis are labeled in the figure. The function f is defined for all real numbers and satisfies f(8) = 4.

$$x \mid F(x)$$

0 -8

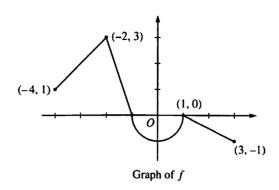
1 -6

4 0 mm value occurs at $x = 0$

6 -3

8 4 given

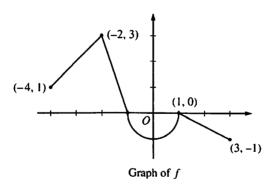
Problem 10 [2012 AB FRQ #3c]



- 3. Let f be the continuous function defined on [-4, 3] whose graph, consisting of three line segments and a semicircle centered at the origin, is given above. Let g be the function given by $g(x) = \int_1^x f(t) dt$.
- (c) Find the x-coordinate of each point at which the graph of g has a horizontal tangent line. For each of these points, determine whether g has a relative minimum, relative maximum, or neither a minimum nor a maximum at the point. Justify your answers.

$$\chi=-1$$
 rel max blc $g'=F$ crosses χ -axis $\chi=1$ neither blc $g'=F$ does not change signs

Problem 11 [2012 AB FRQ #3d]



- 3. Let f be the continuous function defined on [-4, 3] whose graph, consisting of three line segments and a semicircle centered at the origin, is given above. Let g be the function given by $g(x) = \int_{1}^{x} f(t) dt$.
 - (d) For -4 < x < 3, find all values of x for which the graph of g has a point of inflection. Explain your reasoning.

$$\chi = -2, 0, 1$$
 because $g' = f$ changes
direction